Math Virtual Learning

 Algebra 1 S1Solving a system of linear equations by Elimination
April 22, 2020

Algebra I S1
 Lesson: April 22, 2020

Objective/Learning Target:

Students will find the solution to a system of linear equations by using the elimination method.

BELL RINGER

Solve using Substitution:

$$
\begin{aligned}
x & =-2 y \\
3 x+4 y & =-8
\end{aligned}
$$

BELL RINGER-SOLUTION

Solve each system by substitution.

Elimination Method

Solving a system of equations by elimination using multiplication.

Click to watch the video.
2) Multiply I Equation + Eliminate

Solve the system
$-4 x+8 y=9$
(4) $(x-2 y=3)$

$-4 x+8 y$	$=9$
$+4 x-8 y$	$=12$
$0 x+0 y$	$=21$
0	$=21$

$0=0$
$1=1$
$q=9$
infinitely
many
solutions
no solution

Example 1:		$2 x+6 y=10$
		$3 x-6 y=0$
1)	This step is not needed as the coefficients of y are already opposites.	
2)	$2 x+6 y=10$	Add the two equations together
	$+3 x-6 y=0$	
	$5 x=10$	
3)	$5 x=10$	Solve the resulting equation
	$x=2$	
4)	$2(2)+6 y=10$	Substitute the known value into one of the equations
	$4+6 y=10$	Simplify
	$6 y=6$	Solve
	$y=1$	Solve
5)	$(2,1)$	Write the solution as an ordered pair

More Examples

InDEPENDENCE SCHOOL DISTRICT
Example 21
More Examples

$$
\begin{aligned}
& 2 x+3 y=20 \\
& -2 x+y=4
\end{aligned}
$$

See how these guys are the same, but with a different sign?

$$
\begin{aligned}
2 x+3 y & =20 \\
+-2 x+y & =4 \\
\hline 0+4 y & =24 \\
4 y & =24 \\
y & =6
\end{aligned}
$$

We've got one of them... Now, we just need to get the X. To do this, you can stick the Y into either of the original equations...

The second equation is easier:
The second equation is easier:

$$
\begin{aligned}
-2 x+y & =4 \quad y=(6) \\
-2 x+6 & =4 \\
-2 x & =-2 \\
x & =1
\end{aligned}
$$

It looks like the answer is $(1,6)$.

More Examples

But, check out the \mathbf{Y} guys:

$$
\begin{gathered}
3 x-4 y=-5 \\
5 x-2 y=-6
\end{gathered}
$$

If we could make this $a+4 y$, the y^{\prime} 's would drop out...

So, let's do it! Remember that we can multiply an equation by a number...
So, let's multiply the second equation by a -2 :

More Examples

Now, stick the x guy into either of the original equations. I'm going to go for the first one:

$$
3 x-4 y=-5
$$

$$
-2(5 x-2 y=-6)
$$

$$
\begin{array}{rlrl}
3 x-4 y & =-5 \\
\rightarrow-10 x+4 y & =12 \\
\hline-7 x+0 & =7 & x=-(1) \\
-7 x & =7 & 3 x-4 y & =-5 \\
x & =-1 & & 3(-1)-4 y \\
=-3-4 y & =-5 \\
-3-5 y & =-2 \\
y & =\frac{1}{2}
\end{array}
$$

Remind student to multiply each
one !l!

Answer is: $(-1,1 / 2)$

Click the link.
Complete the practice problems from the first page on a sheet of paper.
You can check your answers on the second page.

