

Math Virtual Learning Algebra 1 S1 Solving a system of linear equations by Elimination **April 22, 2020**

Algebra I S1 Lesson: April 22, 2020

Objective/Learning Target:
Students will find the solution to a system of linear equations by using the elimination method.

BELL RINGER

Solve using Substitution:

$$x = -2y$$
$$3x + 4y = -8$$

BELL RINGER-SOLUTION

Solve each system by substitution.

Elimination Method

Solving a system of equations by elimination using multiplication.

Step 1: Put the equations in Standard Form.

Step 2: Determine which variable to eliminate.

Step 3: Multiply the equations and solve.

Step 4: Plug back in to find the other variable.

Step 5: Check your solution.

Standard Form: Ax + By = C

Look for variables that have the same coefficient.

Solve for the variable.

Substitute the value of the variable into the equation.

Substitute your ordered pair into BOTH equations.

Click to watch the video.

Example 1:

$$2x + 6y = 10$$

$$3x - 6y = 0$$

1) This step is not needed as the coefficients of y are already opposites.

2)
$$2x + 6y = 10$$

Add the two equations together

+ 3x - 6y = 0

3)
$$5x = 10$$

Solve the resulting equation

$$x = 2$$

Substitute the known value into one of the equations

$$4 + 6y = 10$$

Simplify

$$6y = 6$$

Solve

$$y = 1$$

Solve

Write the solution as an ordered pair (2, 1)

Example 2

See how these guys are the same, but with a different sign?

The second equation is easier:

$$-2x + y = 4$$

 $-2x + 6 = 4$
 $-2x = -2$
 $x = 1$

It looks like the answer is (1, 6).

We've got one of them... Now, we just need to get the X. To do this, you can stick the Y into either of

the original equations...

But, check out the y guys:

$$3x - 4y = -5$$

$$5x - 2y = -6$$

If we could make this a +4y, the y's would drop out...

So, let's do it! Remember that we can multiply an equation by a number...

So, let's multiply the second equation by a -2:

$$3x-4y=-5$$
 $-2(5x-2y=-6)$

Remind student to multiply each one!!!

$$3x - 4y = -5$$

$$\rightarrow \frac{-10x + 4y = 12}{-7x + 0 = 7}$$

$$-7x = 7$$

$$x = -1$$

Now, stick the x guy into either of the original equations. I'm going to go for the first one:

$$x = -1$$
 $3x - 4y = -5$
 $3(-1) - 4y = -5$
 $-3 - 4y = -5$
 $-4y = -2$
 $y = \frac{1}{2}$

Answer is: (-1, 1/2)

Click the link.

Complete the practice problems from the first page on a sheet of paper.

You can check your answers on the second page.

